分析

简答题:设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量.
(I)证明P为可逆矩阵;
(11)若A2α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.

正确答案
(I)α≠0且α不是A的特征向量,于是Aα≠λα, 故α与Aα线性无关,
则r(α,Aα)=2,
则P可逆.
(II)解法一 
由已知有A2α=-Aα+6α,
于是AP=A(α,Aα)=(Aα,A2α)=(Aα,-Aα+6α)
 
因为P可逆,
 

所以可得A的特征值也为-3,2.于是A可相似对角化.
解法二:
P-1AP同解法一.
由A2α+Aα-6α=0,
得(A2+A-6E)α=0,
即(A+3E)(A-2E)α=0,
由α≠0得(A2+A-6E)x=0有非零解,
故|(A+3E)(A-2E)|=0,
得|A+3E|=0或|A-2E|=0,
若|A+3E|≠0,则有(A-2E)α=0,故Aα=2α与题意矛盾,
故|A+3E|=0,同理可得|A-2E|=0.
于是A的特征值为λ1=-3,λ2=2,
A有2个不同特征值,故A可相似对角化.
查看解析

相关试题

单选
当x→0+时,下列无穷小量中是最高阶的是().
A <img src="https://www.beizhujiaoyu.com/uploads/202208/161966195829571.png" width="98" height="35" />  B <img src="https://www.beizhujiaoyu.com/uploads/202208/16196619622481.png" width="120" height="35" />  C <img src="https://www.beizhujiaoyu.com/uploads/202208/161966196694791.png" width="83" height="37" />  D <img src="https://www.beizhujiaoyu.com/uploads/202208/161966197182881.png" width="118" height="37" /> 
查看
单选
A 1 B 2 C 3 D 4
查看
单选
A <img src="https://www.beizhujiaoyu.com/uploads/202208/161966198511401.png" width="19" height="37" />  B <img src="https://www.beizhujiaoyu.com/uploads/202208/161966199292021.png" width="19" height="37" />  C <img src="https://www.beizhujiaoyu.com/uploads/202208/161966199616981.png" width="18" height="29" />  D <img src="https://www.beizhujiaoyu.com/uploads/202208/161966200173241.png" width="18" height="29" /> 
查看
单选
已知函数f(x)=x2ln(1-x),当n≥3时,f(n)(0)=().
A <img src="https://www.beizhujiaoyu.com/uploads/202208/161966200594911.png" width="55" height="34" />  B <img src="https://www.beizhujiaoyu.com/uploads/202208/161966200930781.png" width="40" height="35" />  C <img src="https://www.beizhujiaoyu.com/uploads/202208/161966201375481.png" width="84" height="34" />  D <img src="https://www.beizhujiaoyu.com/uploads/202208/16196620309201.png" width="70" height="34" /> 
查看
单选
A 4 B 3 C 2 D 1
查看
单选
设函数f(x)在区间[-2,2]上可导,且f'(x)>f(x)>0,则
A <img src="https://www.beizhujiaoyu.com/uploads/202208/161966204567291.png" width="88" height="38" />  B <img src="https://www.beizhujiaoyu.com/uploads/202208/161966204914271.png" width="90" height="38" />  C <img src="https://www.beizhujiaoyu.com/uploads/202208/161966205384621.png" width="95" height="38" />  D <img src="https://www.beizhujiaoyu.com/uploads/202208/161966205868011.png" width="94" height="38" /> 
查看
单选
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,α1,α2,α3,α4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为().
A x=k<sub>1</sub>α<sub>1</sub>+k<sub>2</sub>α<sub>2</sub>+k<sub>3</sub>α<sub>3</sub>,其中k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>为任意常数 B x=k<sub>1</sub>α<sub>1</sub>+k<sub>2</sub>α<sub>2</sub>+k<sub>3</sub>α<sub>4</sub>,其中k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>为任意常数 C x=k<sub>1</sub>α<sub>1</sub>+k<sub>2</sub>α<sub>3</sub>+k<sub>3</sub>α<sub>4</sub>,其中k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>为任意常数 D x=k<sub>1</sub>α<sub>2</sub>+k<sub>2</sub>α<sub>3</sub>+k<sub>3</sub>α<sub>4</sub>,其中k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>为任意常数
查看
单选
设A为三阶矩阵,α1,α2为A的属于特征值1的线性无关的特征向量,α3为A的属于特征值-1的特征向量,则满足的可逆矩阵P为().
A (α<sub>1</sub>+α<sub>3</sub>,α<sub>2</sub>,-α<sub>3</sub>) B (α<sub>1</sub>+α<sub>2</sub>,α<sub>2</sub>,-α<sub>3</sub>) C (α<sub>1</sub>+α<sub>3</sub>,-α<sub>3</sub>,α<sub>2</sub>) D (α<sub>1</sub>+α<sub>2</sub>,-α<sub>3</sub>,α<sub>2</sub>)
查看
分析
填空题:
查看
分析
填空题:
查看
刷题小程序
数学二题库小程序